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We study reconnection phenomena in magnetohydrodynamics on the basis of a magnetohydrodynamic
version of the Eulerian-Lagrangian analysis. We find that the methods are useful in capturing time scales
associated with magnetic reconnection both in two and three dimensions. Visualizations show that the deter-
minants of the Jacobian determinants of the diffusive labels are small where active reconnection takes place.
The resetting of the diffusive labels extracts a short time scale during reconnection.
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I. INTRODUCTION

Magnetic reconnection is a phenomenon that has been
extensively investigated in magnetohydrodynamics contexts,
because of its importance in plasma and solar physics �1–3�.
There are a number of mathematical models that display
some essential features of magnetic reconnection phenom-
ena, especially in two-dimensional and stationary cases. On
the other hand, the understanding of nonstationary three-
dimensional reconnection seems to be far from being satis-
factory, in spite of a lot of efforts that have been made theo-
retically and numerically.

In this paper, a method of detecting the magnetic recon-
nection is proposed and applied to some numerical simula-
tions. This method is based on the Eulerian-Lagrangian for-
malism for the Navier-Stokes equations which has been
developed in Refs. �4,5�. The method has been applied to
numerical calculations of the Navier-Stokes equations in Ref.
�6�. There it was found that the resetting phenomena associ-
ated with noninvertibility of diffusive Lagrangian maps cap-
tures vortex reconnection successfully. This formalism was
also applied to the analysis of turbulence �7�.

It should be noted that this formalism for the Navier-
Stokes equations has been extended further by using the
Moore-Penrose algorithm in solving the underdetermined
system of equations for the potentials �8� and that it has been
applied to number of cases. Recently, an interesting work has
been done �9� on the basis of the generalized Euler-
Lagrangian formulation including the magnetohydrodynamic
cases. There, the diffusive labels are introduced at the level
of the magnetic induction equations, by using viscous Weber
transforms for the magnetic potentials. As the initial data, the
three-dimensional ABC flow, the two- and three-dimensional
Orszag-Tang vortices were treated. The main result of that
work is that the frequent resettings are correlated with
growth of magnetic enstrophy.

Here we attempt to characterize magnetic reconnection in
the magetohydrodynamics �MHD� systems using the original
Eulerian-Lagrangian formalism, that is, without the Moore-
Penrose procedure. We first formulate the generalization of

Eulerian-Lagrangian formalism for the MHD case. Then we
apply it to two- and three-dimensional MHD equations nu-
merically to study magnetic reconnection.

In our theoretical formulation, we consider viscous Weber
transforms both for magnetic potentials and for velocity
fields. This allows the interpretation that the diffusive labels
describe reconnection phenomena both in magnetic and ve-
locity �vorticity� fields. In this formulation, however, we are
restricted to the case of unit magnetic Prandtl number. The
formulation used here is more special than what was used in
Ref. �9� in the sense that it does not use Moore-Penrose
algorithm, but more general in the sense that both magnetic
and kinetic potentials have dissipative labels. In addition to
the technical issue of making both Weber potentials dissipa-
tive, there is a clear observation of predominant magnetic
reconnection which converts magnetic energy into kinetic
energy efficiently in a short time scale, one of the most im-
portant phenomena in plasma physics. We will show, in par-
ticular, how the diffusive labels can keep track of active
magnetic reconnection in a number of typical numerical ex-
periments, both in extracting its time scale and in identifying
the locations in physical space.

The rest of this paper is organized as follows. We describe
the mathematical formulation in Sec. II. In Sec. III, numeri-
cal results are presented in three and two dimensions. Sec-
tion IV will be devoted to a summary and discussion.

II. DISSIPATIVE MHD IN THREE DIMENSIONS

The Eulerian-Lagrangian formulation for the Navier-
Stokes equations was developed in Ref. �4,5�. We generalize
it to the case of MHD under the assumption of unit magnetic
Prandtl number. To do so we recall two Weber transforms,
one for velocity and the other for the magnetic potential, in
ideal magnetohydrodynamics �Appendix� and make both of
them dissipative.

With standard notations, a set of dissipative MHD equa-
tions reads for that case as follows:

Du

Dt
= − �p + �� � B� � B + ��u , �1�
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�B

�t
= � � �u � B� + ��B , �2�

and

� · u = � · B = 0. �3�

Let the diffusive labels A obey

DA

Dt
= ��A , �4�

where A=x at t=0.
We first treat ũ �see the Appendix for its definition�. Set

ũ = v��A�T − �� �5�

or, in components,

ũi =
�Aj

�xi
v j −

��

�xi
. �6�

(Equivalently, we may write u=P�v��A�T+m�B�, where
m is defined in Eq. �10� below.) If

Dv
Dt

= ��v + 2�C:�v , �7�

where C is defined as usual by Cm,k;i=Qji� j�kAm with Q
= ��A�−1. Then it can be shown that

Dũ

Dt
= − �p − �B � m� · ��u�T + ��ũ �8�

and

D�

Dt
= p −

�u�2

2
+ ��� . �9�

The equation for m takes the following form

Dm

Dt
= m · �u + J + ��m + �

���B�2 · ��m
�B�2

. �10�

�See the Appendix for the definition of J.�
Second, we consider the magnetic potential A,

�B=��A�. Note that A is to be distinguished from A. For
this easier part, we set

A = P�W��A�T� �11�

or

Ai =
�Aj

�xi
Wj −

��

�xi
. �12�

If we assume that the equation for W is given by

DW

Dt
= ��W + 2�C:�W , �13�

with the same C, then we have

DA
Dt

= ��A − A��u�T − �� �14�

and

D�

Dt
= � + ��� . �15�

Thus the set of equations �4�, �7�, and �13� constitutes an
alternative representation �A ,v ,W� for MHD, which is
equivalent to �u ,B�.

III. NUMERICAL RESULTS

A. Numerical method

Practically, we solve the following set of equations for the
impulse � and the magnetic field B:

��

�t
= u � � + �B · ��B + ��� , �16�

�B

�t
= � � �u � B� + ��B , �17�

and

Dl

Dt
= − u + ��l . �18�

Here l denotes displacement

l � A − x �19�

and the incompressible velocity field is retrieved from im-
pulse � by solenoidal projection

u = P��� . �20�

Note that we have �=v��A�T+m�B �modulo a scalar gra-
dient�.

Under periodic boundary conditions, we solve the above
equations by pseudospectral methods. We use 2563 grid
points, with aliasing errors removed by the 2 /3 rule. Time
marching was done by Runge-Kutta scheme.

If the correspondence between A and x becomes nonin-
vertible, that is, when det��A� becomes very small, we reset
A as A=x. In practice we adopt the following:

Det��A� 	 
 ⇒ l = 0

as a resetting criterion typically with 
=0.01. In this way we
describe the MHD fields in terms of near-identity transfor-
mations.

B. Three-dimensional MHD

It is important choose initial condition appropriately for
magnetic reconnection to take place. Here we consider mag-
netic fields made up of a number of compactly supported
magnetic flux tubes.

By the extensive numerical studies on magnetic reconnec-
tion done so far, it is now understood that at least two factors
should be taken into account for efficient reconnection, that
is, �1� twists along flux tubes and �2� counterhelicity �as op-
posed to cohelicity� configuration in the interaction zone. It
is in order to recall that a twisted flux tube has a magnetic
helicity H defined by
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H = �
V

A · Bdx ,

where B=��A and V is the support of B. For a right-�left-�
handed flux tube, the helicity H is positive �negative�. A pair
of tubes with helicities of the same �opposite� sign is called
cohelical �counterhelical�.

Each elementary flux tube of the initial fields is assumed
to have Gold-Hoyle tube �10�, which is given in cylindrical
coordinates by

Bz�r� =
B0

1 + q2r2 , �21�

B��r� = qrBz�r� , �22�

where B0=4�8�	20, the value for B0 was taken over from
a compressible case where a thermodynamic balance was
used �11,12�. The parameter q denotes twist �pitch�, which
means azimuthal field lines wind q times in a right handed
sense per a length of 2� along the tube axis. The model of
Gold and Hoyle �10� proposed for flares shows how two
antiparallel flux tubes with opposite twists come into contact
and reconnect in such a way that left-handed lines connect to
right-handed ones and untwist themselves.

As mentioned above, a right-handed flux tube has the
positive helicity and left-handed one has the negative helic-
ity. More specifically, if the magnetic field is made up of

predominant Bz and azimuthal B�, it has positive �negative�
helicity, depending on A�B�0��0�, where A� is the vector
potential which is induced by Bz. The flux tube pairs are
cohelical �counterhelical� when their helicities have the same
�opposite� sign.

We will use three different kinds of initial conditions,
taken from the comprehensive work �13�. We will address
reconnection on the basis of the Eulerian-Lagrangian formal-
ism and readers should consult Ref. �13� for the detailed
descriptions of reconnection mechanisms. See also Ref.
�14,15� for related issues.

For the kinematic viscosity � and magnetic diffusivity �,
we use ��=��=2.0�10−3 and 4.0�10−3. We treat only the
case of unit magnetic Prandtl number. For the time step, we
use �t=2.5�10−4 for t	2.5, 5.0�10−4 for t�2.5. In the
early stage, we need to make the time step smaller to stabi-
lize the abrupt evolution associated with rapid magnetic re-
connection.

As for an initial condition of velocity we take

u�x� = u0
− sin�x − ���cos�y − �� + cos�z − ���,

cos�x − ��sin�y − ��,cos�x − ��sin�z − ��� ,

where uA=0.2�	uA /28�. This is to push the flux tubes to-
ward the origin, to trigger close interaction between them.

IC-1: Orthogonally offset flux tubes. This may be re-
garded as a magnetic counterpart of the orthogonally offset
vortex tube reconnection experiment used in Ref. �16�. It is
categorized as the case “slingshot” and labeled “RL2” in Ref.
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FIG. 1. Time evolution of the total energy ET�t� �solid line�, �ten
times� the kinetic energy 10E�t� �dashed�, and the magnetic energy
EM�t� �dotted� for IC-1 with �=2.0�10−3.
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FIG. 2. Time evolution of spatial average of squared displace-
ment for IC-1 with �=2.0�10−3.
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FIG. 3. Time evolution of dissipation of total energy for IC-1,
for �=2.0�10−3 �solid� and 4.0�10−3 �dashed�.
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FIG. 4. Time evolution of resetting time scales for IC-1, plotted
with the same line convention as in Fig. 3.
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�13� �see its Fig. 10�. As stressed above, for efficient recon-
nection of magnetic flux tubes, it is necessary for them to
have twists along the field lines.

We define three kinds of energies by

ET�t� =
1

2
��u�2 + �B�2 ,

EM�t� =
1

2
��B�2 ,

and

EK�t� =
1

2
��u�2 ,

where the brackets denote a spatial average in �0,2��3.
In Fig. 1, we show how the total energy ET�t� and mag-

netic energy EM�t� decay in time together with an increase in
kinetic energy EK�t�. The abrupt increase in EK�t� during 4

	 t	8 is due to the conversion of magnetic energy into ki-
netic energy via the Lorenz force term. In Fig. 2, time evo-
lution a squared norm Ql�t� of displacement � is shown,
where

Ql�t� =
1

2
��� � l�2 .

The curve hits zero many times as a result of resettings l
=0. We observe that a very frequent process of resettings is
correlated with the growth of the kinetic energy �see Fig. 1�.

In principle, the time evolution of diffusive labels depends
on the threshold 
 for resetting. We have checked that the
time interval with frequent resetting �e.g., as seen in Fig. 2�
is insensitive to the choice of 
, say in the range of 0.1-0.001
�not shown�. Thus, checking resetting procedures gives a ro-
bust measure of reconnection qualitatively �see also Ref.
�7��.

The time evolution of the total dissipation rate

FIG. 5. �Color online� Isosurface plots of �B�2=39.8 for IC-1.
White dots: det��A�=0.995 �14 650 points�.

FIG. 6. �Color online� Isosurface plots of �B�2=27.3 for IC-1.
White dots: det��A�=0.9995 �8546 points�.

FIG. 7. �Color online� Isosurface plots of �B�2=16.3 for IC-1.
White dots: det��A�=0.95 �6683 points�.

FIG. 8. �Color online� Isosurface plots of �B�2=7.87 for IC-1.
White dots: det��A�=0.99 �22 530 points�.
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�t� = �����2 + �J�2

is plotted in Fig. 3. It shows a slow decay 
�t�	0.1 during
frequent resettings.

In order to characterize time scales more quantitatively, it
is convenient to consider the time intervals between the ad-
jacent resettings

�t = tj − tj−1, �j = 1,2, . . . � ,

where tj denote the time of jth resetting �6�. In Fig. 4 we
show them for two different values of viscosity. Two features
should be noted: first, the time scales are smaller for higher
�magnetic� Reynolds number and second, �t reaches a mini-
mum around t=6 and starts increasing again. It increases
basically monotonically after the completion of reconnection
around t=6.

It is of interest to study what physical events are associ-
ated with the resettings observed above. In Figs. 5–9, isosur-
faces of �B�2 are plotted together with locations of small
det��A� �white dots�. All the isosurfaces plotted in this paper
correspond to the case of �=2.0�10−3. �Note that out of
resolved 2563 grid points, 1283 were used for visualization.�

From these plots we confirm that flux tubes indeed un-
dergo magnetic reconnection on the time interval 4� t�8,
during which frequent resettings are taking place. It should
be noted that at t=5.5 and 8.5 the points with small det��A�
are found at the edges of a “bridge” joining the two flux
tubes.

IC-2: Antiparallel flux tubes with counterhelicity �21�.
This case was categorized a as “slingshot” in Ref. �13� �see
its Fig. 9� and labeled “RL4” therein. In this case, we have
oppositely signed helicity in the interaction zone. This con-
figuration of countercohelicity enhances annihilation of he-
licity and releases magnetic energy efficiently.

We show in Fig. 10, the time development of three kinds
of energies ET�t�, EM�t�, and EM�t� with the same convention
as in Fig. 1. A very sharp peak in the kinetic energy EK�t�
centered around t=3 is noticeable, followed by a rapid decay
in magnetic energy EM�t� and total energy ET�t�. The kinetic
energy EK�t� takes relatively large values during the interval
2	 t	6, which is associated with a drop in the magnetic
energy EM�t�. This suggests that the magnetic energy is re-
leased through reconnection �to be confirmed by visualiza-
tion below�.

Indeed, the time development of the �squared� norm of
displacement Ql�t� in Fig. 11 shows frequent resettings just
before t=2 up to t=6. We note that this collapses on the
interval of growth of kinetic energy, confirming that the re-
settings capture reconnection phenomena.

Figure 12 shows the time evolution of the dissipation rate
of total energy 
�t�, which is sharply peaked just past t=2.

FIG. 9. �Color online� Isosurface plots of �B�2=6.05 for IC-1.
White dots: det��A�=0.99 �18 629 points�.
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FIG. 10. Time evolution of the total energy ET�t� �solid line�,
�ten times� the kinetic energy 10E�t� �dashed�, and the magnetic
energy EM�t� �dotted� for IC-2 with �=2.0�10−3.
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FIG. 11. Time evolution of spatial average of squared displace-
ment for IC-2 with �=2.0�10−3.
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FIG. 12. Time evolution of dissipation of total energy for IC-2,
with �=2.0�10−3 �solid� and 4.0�10−3 �dashed�.
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The magnetic energy released by reconnection leads to a
sudden increase not only in kinetic energy �see Fig. 10�, but
also in the total dissipation.

The behavior of resetting time scale shown in Fig. 13. As
in the previous case, it attains the minimum when the recon-
nection process starts and increases again after its comple-
tion.

In Figs. 14–17, we show the time evolution of the isosur-
faces of the magnetic fields �B�2, together with regions with
small det��A�. We see clearly that prominent reconnection
takes place between t=1.5 and t=2.5. The regions with small
determinants lie in the interaction zones where active recon-
nection is taking place.

IC-3: Parallel flux tubes with cohelicity. As the final case
in three dimensions, we consider the case called a “merge” in
Ref. �13� �see its Fig. 7� and labeled “RR0” therein. Note
that here we have like-signed helicity in the interaction zone.

We see in Fig. 18 that the kinetic energy EK�t� increases
around t=2, with the decrease of the total ET�t� energy and
the magnetic energy EM�t�. However, the increase is not so
significant as compared with IC-2, because in this “merge”
experiment annihilation of helicity is limited as a result of

the cohelicity configuration. It limits annihilation of helicity
hence reducing the release of magnetic energy compared
with IC-2 �see Fig. 10�.

Even in this case we can still have frequent resettings in
the time evolution of displacement Ql�t� �Fig. 19�, just before
t=2 to t=5. We note that the dissipation rate 
�t� of the total
energy is peaked when the kinetic energy increases rapidly
�Fig. 20�.

The resetting time scale attains minimum during 2	 t
	4 and then starts increasing later. The time scale is smaller
for higher Reynolds number �Fig. 21�.

In Figs. 22–25, we confirm that merging process is ac-
tively taking place during the frequent resettings, where two
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FIG. 13. Time evolution of resetting time scales for IC-2, plot-
ted with the same line convention as in Fig. 12.

FIG. 14. �Color online� Isosurface plots of �B�2=39.8 for IC-2.
White dots show locations with small det��A�=0.995 �20 620
points�.

FIG. 15. �Color online� Isosurface plots of �B�2=32.3 for IC-2.
White dots show locations with small det��A�=0.85 �24 924
points�.

FIG. 16. �Color online� Isosurface plots of �B�2=14.6 for IC-2.
White dots show locations with small det��A�=0.95 �22 846
points�.
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parallel right-handed flux tubes merge into a right-handed
flux tube.

C. Two-dimensional Orszag-Tang vortex

Now we turn our attention to two-dimensional MHD
equations. The governing equations in this case read

��

�t
+ u · �� = b · �j + ��� , �23�

�a

�t
+ u · �a = ��a , �24�

where

b = ��ya,− �xa�, j = − �a ,

are the magnetic field and the current, respectively. The
Eulerian-Lagrangian formulation for these equations are eas-
ily obtained by specializing the spatial dimension to two in
what is given in the previous section.

As an initial condition, we choose so-called Orszag-Tang
�OT� vortex defined by

� = − 2�cos x + cos y�

and

a = 2 cos x + cos�2y� .

We use 5122 and 10243 grid points for 2 /3-dealiased pseu-
dospectral simulations. The values of kinematic viscosity
used are �=�=5�10−3 �5122 grid points� and 2.5�10−3

�10242 grid points�.
We take the maximum b0=4 in �b � =4�sin2 x+sin2�2y� to

estimate Alfven velocity vA=b0 /�4�	1.28. We note that
this initial condition was treated in Ref. �9�, where the simi-
lar resettings were found at lower spatial resolutions of 1282

grid points.
We show in Fig. 26 the time development of

El�t� =
1

2
��l�2 ,

where the brackets denote a spatial average in �0,2��2. It
shows that frequent resettings take place. In Fig. 27, time
development of the resetting time scales is shown. The gen-
eral behavior is consistent with the results of Ref. �9�, includ-
ing a lack of clear decrease in the time scale.

We have examined the contours of the vector potential in
order to show that magnetic reconnection actually corre-
sponds to the resetting processes by investigating physical

FIG. 17. �Color online� Isosurface plots of �B�2=6.71 for IC-2.
No white dots are seen because they are plotted just after a
resetting.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

0 2 4 6 8 10 12

10
E

(t
),

E
T
(t

),
E

M
(t

)

t

FIG. 18. Time evolution of the total energy ET�t� �solid line�,
�ten times� the kinetic energy 10E�t� �dashed�, and the magnetic
energy EM�t� �dotted� for IC-3 with �=2.0�10−3.
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FIG. 19. Time evolution of spatial average of squared displace-
ment for IC-3 with �=2.0�10−3.
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FIG. 20. Time evolution of dissipation of total energy for IC-3,
with �=2.0�10−3 �solid� and 4.0�10−3 �dashed�.
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space structure. In Figs. 28 and 29, we plot time develop-
ment of contours of magnetic potential a. We see that two
magnetic vortices in the central region coalesce during a time
interval of 1.5	 t	4.0. In that period of merging of
a-islands, we have frequent resettings. Hence magnetic re-
connection is well captured by resetting in two dimensional
MHD as well.

A version of three-dimensional Orszag-Tang vortex was
also studied in Ref. �9�, where the resettings were found.
Note also that resettings were found using similar three-
dimensional initial conditions �19�. As stressed in Ref. �9�,
the resettings for these flows are correlated with growth mag-
netic energy and not with increase of the kinetic energy.

IV. SUMMARY AND DISCUSSION

Attempts have been made to characterize magnetic recon-
nection phenomena using the diffusive Lagrangian maps in
the Eulerian-Lagrangian formalism. We generalize the
Eulerian-Lagrangian formalism for Navier-Stokes equations

to MHD case for the case of unit magnetic Prandtl number.
Our main objective here is to investigate reconnection,

which releases magnetic energy into kinetic energy, on the
basis of Eulerian-Lagrangian formalism. We compare or-
thogonally offset tubes and cohelicity and counterhelicity
configurations with twists along flux tubes.

In all the three different kinds of initial conditions in three
dimension, we found the following features for the resetting
time scale: it reaches a minimum and stays there for some
time, during which significant reconnection proceeds and it
starts to increase again approximately linearly in time.
Therefore by plotting the time intervals of resettings, we can
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FIG. 21. Time evolution of resetting time scales for IC-3, plot-
ted with the same line convention as in Fig. 20.

FIG. 22. �Color online� Isosurface plots of �B�2=39.8 for IC-3.
White dots show locations with small det��A�=0.995 �20 608
points�.

FIG. 23. �Color online� Isosurface plots of �B�2=32.3 for IC-3.
White dots show locations with small det��A�=0.15 �19 934
points�.

FIG. 24. �Color online� Isosurface plots of �B�2=23.7 for IC-3.
White dots show locations with small det��A�=0.99 �35 264
points�.
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tell when the substantial resetting takes place reasonably
well.

In three dimensions, we consider cases where flux tubes
are highly localized in space. Two facts should be noted re-
garding the advantages of the Eulerian-Lagrangian approach.
�i� The spatial regions with small values of the determinant
det��A� coincide with locations of active magnetic recon-
nection �as confirmed by visualization of flux tubes�. �ii�
Short time scales are found by resettings of det��A�, and
they come from those localized region in �i�. Thus, as far as
the present numerical experiments are concerned, it makes
sense to associate the time scale with the magnetic reconnec-
tion. In other words, the Eulerian-Lagrangian analyses allow
us to extract the time scale of reconnection inductively.

Finally, a few comments on the models of magnetic re-
connection may be in order. Regarding two-dimensional
models, such as Sweet-Parker’s and Petschek’s, there had
been discussions on whether steady self-consistent solutions
can yield reconnection that are localized in both directions.

The Sweet-Parker model is a solution that is only localized
in one spatial direction with throttled reconnection. The
Petschek model for the same configuration used to be
regarded as providing an unthrottled solution. It was later
found that the result is not a solution of the resistive MHD
equations �3�. Studies over the past decade have focused on
non-MHD effects that do yield Petschek-like localization,
but these solutions are not reproduced by resistive MHD,
e.g., Ref. �20�. In this paper, the problem setting produces
localized structures as initial conditions, hence faster recon-
nection. Whether the method will also be useful in obtaining
spontaneous localization, which is different from the cases
described here, is left for future study.

FIG. 25. �Color online� Isosurface plots of �B�2=19.4 for IC-3.
White dots show locations with small det��A�=0.999 �20 859
points�.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

E
l(t

)

t

FIG. 26. Time evolution of displacement norm: Solid line ��
=2.5�10−3� and dashed �5�10−3�.
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FIG. 27. Comparison of resetting time scales for OT vortex,
plotted with the same line convention as in Fig. 26.
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FIG. 28. Time evolution of contours of magnetic potential plot-
ted with ten equally separated levels, for �a� t=0, �b� t=0.5, �c� t
=1.0, �d� t=1.5, �e� t=2.0, and �f� t=2.5.
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APPENDIX: IDEAL MHD IN THREE DIMENSIONS

We first review Weber transforms in ideal MHD �17,18�.
The governing equations for velocity u, magnetic field
B�=��A� read

Du

Dt
= − �p + �� � B� � B , �A1�

�B

�t
= � � �u � B� , �A2�

where � ·u=� ·B=0. Note that A is the magnetic potential,
not diffusive labels.

The second can be written as

�A
�t

= u � �� � A� − �� �A3�

or

DA
Dt

= − A��u�T − �� , �A4�

where p, �=�−u ·A are scalars and T denotes matrix trans-
pose.

There are two kinds of helicity-like conservation laws:
magnetic helicity and cross-helicity

�A · Bdx,� u · Bdx .

To each conservation law there corresponds Weber-like
transform.

Under the choice of gauge � ·A=0 The Weber transform
for the former is derived from

D

Dt
�Ai

�xi

�ak
� = −

��

�ak
�A5�

as

Ai = Ai�0�
�ak

�xi
−

��

�xi
, � = �

0

t

��a,t��dt�, �A6�

or

A = P�A0��a�T� , �A7�

where a is Lagrangian label and P solenoidal projection.
For the second cross-helicity, we describe a derivation of

the corresponding Weber transform �18� �J=��B�

Du

Dt
·

�x

�ai
= −

�p

�ai
− �B � J� ·

�x

�ai
. �A8�

The left hand side is as usual,

Du

Dt
·

�x

�ai
=

D

Dt
�u ·

�x

�ai
� −

�

�ai

�u�2

2
. �A9�

For the right-hand side, we introduce an auxiliary variable m
by

Dm

Dt
= m · �u + J , �A10�

� · m = 0, �A11�

which satisfies

D�m · �S�
Dt

= J · �S �A12�

for any surface element �S. Then

0 2π0

2π

0 2π0

2π

0 2π0

2π

0 2π0

2π

0 2π0

2π

(a) (b)

(c) (d)

(f)

FIG. 29. Time evolution of contours of magnetic potential plot-
ted with ten equally separated levels, for �a� t=3.0, �b� t=3.5, �c�
t=4.0, �d� t=4.5, and �e� t=5.0.
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�B � J� ·
�x

�ai
= � �x

�ai
� B�

��S

· J =
D

Dt
�m · �S�

=
D

Dt
�m · � �x

�ai
� B�� =

D

Dt
��B � m� ·

�x
�ai

� ,

so

D

Dt
�u ·

�x

�ai
� =

�

�ai
� �u�2

2
− p� −

D

Dt
��B � m� ·

�x

�ai
� .

Introducing a generalized velocity

ũ � u + B � m , �A13�

ũ satisfies

D

Dt
�ũ ·

�x

�ai
� =

�

�ai
� �u�2

2
− p� . �A14�

The corresponding Weber transform is

u = P�ũ0�a���a�T + m � B� . �A15�

Note that Weber transform for MHD is not kinematic, be-
cause m depends on history of evolution, as is seen by the
following formula:

mi = �mj�0� + �
0

t

Jk�a,t��
�aj

�xk
dt�� �xi

�aj
. �A16�

We also note that the governing equations for ũ and gener-
alized vorticity �̃=�� ũ are

Dũ

Dt
= − �p − �B � m� · ��u�T �A17�

and

D�̃

Dt
= ��̃ · ��u , �A18�

respectively.
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